Normal blood pressure

Building Memory
Risk Factors

Multi organ failure
Pressure

Normal COVID19 case

How does our immune system respond to viral infections such as SARS-CoV2?
When viral particles enter, immune cells called macrophages will respond to their entry by producing signalling molecules called cytokines. There are many different types of cytokines, with various functions. One of them is called IFN-α, which causes inflammation. Inflammation is characterized by swelling, pain and redness and is important for the recruitment of immune cells that can fight the virus.

IFN-α is critical for recruiting and activating other immune cells such as T cells and B cells which help to clear the virus.

Individuals that develop severe illness when infected with SARS-CoV2 are unable to mount a proper immune response that can clear the virus immediately.

Without a proper immune response the virus replicates uncontrollably, causing a severe COVID19 case.
As the virus multiplies, the immune response worsens an excessive amount of inflammatory cytokines is produced. This is termed a cytokine storm.

In this state, the inflammatory molecules enter the blood stream and increase the leakage of the lung tissue causing massive fluid build-up in the lungs.

The excess cytokines causes immune cells to accumulate in the lungs and cause collateral damage to lung tissues.

This leads to acute respiratory distress syndrome (ARDS), in which the lungs fail to function.

The extra leakiness in the lungs, causes a drop in blood pressure which prevents sufficient blood supply to other organs such as the heart, kidneys and liver, causing multi-organ failure.

Building Memory

To clear viruses from the body, various aspects of the immune system have to work together. One of the fundamental parts that helps immune cells cooperate are antibodies. Antibodies are large, Y-shaped molecules that are produced by B cells. They can stick to viruses and bacteria and can stop the spread of pathogens by blocking them from infecting cells and help other immune cells specifically target these pathogens to kill them more effectively. It takes time for B cells to produce antibodies upon infection, which is why it takes time to clear the virus.

After the infection is cleared, some of the B cells that produced antibodies specific to the pathogens that we were infected with survive. These memory B cells continue to circulate in the body giving our immune systems with a "memory" of the previous infection. When memory B cells encounter a pathogen that they were previously infected with, they are able to produce antibodies against the pathogen immediately. This helps to alert the immune system right away so that the virus is cleared much faster, often without symptoms.

In individuals that have recovered from COVID19, antibodies against the virus have been detected in their blood. However, whether they confer protection against reinfection with COVID19 is yet to be determined. There have been cases of re-infection but the factors that have contributed to this are also yet to be explored. That being said, please remain vigilant if you have successfully cleared the virus and remember to socially distance to not get others sick!

Risk Factors

Respiratory
Treating asthma and chronic lung disease requires the use of immunosuppressive treatment regimens which weaken anti-viral responses.

Cardiovascular
SARS-CoV2 can infect and kill cardiac tissue cells. Hence, patients with underlying heart conditions and compromised heart function are at a greater risk of heart failure.

Metabolic
Obese and/or diabetic diabetic people have higher blood sugar levels. This can cause inflammation that can interfere with anti-viral responses and hinder viral clearance.

Immunological
Pregnant women, infants and immunocompromised people may be unable to mount an adequate response to SARS-CoV2, putting them at risk of severe infection.

For more information, we can be contacted at:
Rashidi Gajra - rashidi.gajra@mail.utoronto.ca
Nayanan Nathan - nayanan.nathan@mail.utoronto.ca